
Software Engineering

Hans-Petter Halvorsen

The beginning

LabVIEW 1.0 (for Macintosh only!)

Mac OS 1.0

1985: Windows 1.0

1984: Macintosh

TodaySmartphones

TabletsSmart TVs

Ultrabooks

Internet

Apps Web
Smartwatches

Internet,

1968-91

World Wide

Web, 1989-

93
PC, 1981

(IBM)

Internet of

Things

(IoT)

and

Industry
4.0

The

Microprocessor,

1971

The first Computer

The Turing

machine, 1936

1976: Apple I

1984: Macintosh

Smartphone, 2007

20161930

The Computer and Software Revolution

Why Software Engineering?
• There are many differences between a one-person programming

and large software system development.
• The degree of complexities between these two approaches make

it necessary to bring more discipline into the development
process.

• Modern software engineering is very complex and there are large
numbers of failures in many software projects and defects
encountered in the software products.

• All infrastructure for human livings rely on Software today
• That's why Software Engineering is needed

Why Software Engineering?
• Understand Customer Requirements
– What does the customer needs (because they may not know it!)?
– Transform Customer requirements into working software

• Planning
– How do we reach our goals?
– Will we finish within deadline?
– Resources
– What can go wrong?

• Implementation
– What kind of platforms and architecture should be used?
– Split your work into manageable pieces

• Quality and Performance
– Make sure the software fulfill the Customers needs

What is Software Engineering?

Software Engineering is the profession
of the Development and Management of

High Quality Software Systems within
given Time and Cost frames

User

Application

Operating System

Hardware

So
ft

w
ar

e
En

gi
ne

er
in

g

Windows, MacOS, Linux,
Android, iOS, etc.

PC, Mac, Smartphone,
Tablet, Smart TV, etc.

Who are going to use
the software?

Pl
an

ni
ng

, R
eq

ui
re

m
en

ts
, D

es
ig

n,
 Im

pl
em

en
ta

ti
on

,
Te

st
in

g,
 D

ep
lo

ym
en

t,
 M

ai
nt

en
an

ce
, e

tc
.

Desktop, Web, Mobile?

Software Engineering Disciplines
• Software Planning, Project Management
• Requirements Engineering/Analysis
• Database Modeling
• UML (Unified Modeling Language)
• Software Development Processes (Waterfall, Agile Development, Scrum, ...)
• Software Platforms (Desktop, Mobile, Web, Cloud, ..)
• Software Architecture
• Software Implementation
• Source Code Control and Bug Tracking
• Software Testing
• Software Documentation
• Software Deployment and Maintenance

The Waterfall Model
Requirement

Design

Implementation

Testing

MaintenanceDeployment

Software Finished

Planning to create a new Software

A Sequential Process

You cannot go to next phase before
finished the previous phase

Finished

Finished

Finished

Finished

Not Finished?
-Go back and Fixit!

Not Finished?
-Go back and Fixit!

Not Finished?
-Go back and Fixit!

Not Finished?
-Go back and Fixit!

Stakeholders

Product Owner

Scrum Master
Product Backlog

Development Team
3-9 persons

Sprint Backlog

Scrum Process:

Scrum Members:

Daily Scrum Meetings
Max 15 min.

Sprint Review

The Scrum Framework

A Framework for Software Development - Working Software at all times!

Developers

TestersArchitects

Designers

Time Time

Re
su

lt

Re
su

lt

Waterfall vs. Agile
Value Delivery
Risk of Failure

Waterfall Agile

Iterations

14

Requirements/Design Alpha

Beta RC
RTM

Furniture, Flowers and small
adjustments missing

Building structure finished,
Inside work on track

Foundation finished, building structure started Plans made and approved

Ready for Sale or Move in

A “proof” that you can do it, PoC (Proof of Concept)

Days
Weeks

Software Development

24 hours

2-4 weeks
1 -12 months

Working Software at all times.
Testing every day Internal Iterations/Sprints

Months/Years
Public Beta, RC Releases

Daily Scrum
Meetings

Sprint Reviews
& Planning

Beta, RC Testing

Why Do Reviews, Quality Control and Testing?

Requirements

Design

Implementation

Testin
g

Deployment
SDLC (Software Development Life Cycle)

Cost per defects

We will do Reviews, Quality Control and Testing at
different levels through the whole sofware lifecycle

Software Requirements & Design
Requirements (WHAT):
• WHAT the system should do
• Describe what the system should do with Words and Figures, etc.
• SRS – Software Requirements Specification
Software Design (HOW):
• HOW it should do it
• Examples: GUI Design, UML, ER diagram, CAD, etc.
• SDD – Software Design Document
Many dont separate SRS and SDD documents, but include everything in a Requirements
document. In practice, requirements and design are inseparable.

Typical Software Documentation

High-Level
Requirements and
Design Documents

User Manuals

System
Documentation

Installation Guides

Test Plans

Test Documentation

Detailed
Requirements and
Design Documents

ER Diagram (Database)
UML Diagrams (Code)

Ti
m

e

Start

Finish

How to Test/
What to Test

CAD Drawings, etc.

1. Planning

2. Testing

3. End-user
Documentation
(The people that
shall actually use
the software)

Technical Stuff

How to use it

How to install it

Proof that you have tested and that the
software works as expected

(The stakeholders, the
software team; architects,
UX designers, developers)

(QA people)

(Super User/ IT dep.)

WHAT
HOW

(End User)Pr
oj

ec
t M

an
ag

em
en

t (
G

an
tt

 C
ha

rt
, e

tc
.)

(SRS)
(SDD)

(STP)
(STD)

Software
Development Plan (SDP)

2.Requierements
/Design

Want to learn more?

https://www.halvorsen.blog

https://www.halvorsen.blog/documents/programming/software_engineering

Free
Download

(PDF)

Free Textbook, Videos, and other Resources

https://www.halvorsen.blog/
https://www.halvorsen.blog/documents/programming/software_engineering

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: http://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
http://www.halvorsen.blog/

